The dual nature of the wheat xylanase protein inhibitor XIP-I: structural basis for the inhibition of family 10 and family 11 xylanases.

نویسندگان

  • Françoise Payan
  • Philippe Leone
  • Sophie Porciero
  • Caroline Furniss
  • Tariq Tahir
  • Gary Williamson
  • Anne Durand
  • Paloma Manzanares
  • Harry J Gilbert
  • Nathalie Juge
  • Alain Roussel
چکیده

The xylanase inhibitor protein I (XIP-I) from wheat Triticum aestivum is the prototype of a novel class of cereal protein inhibitors that inhibit fungal xylanases belonging to glycoside hydrolase families 10 (GH10) and 11 (GH11). The crystal structures of XIP-I in complex with Aspergillus nidulans (GH10) and Penicillium funiculosum (GH11) xylanases have been solved at 1.7 and 2.5 A resolution, respectively. The inhibition strategy is novel because XIP-I possesses two independent enzyme-binding sites, allowing binding to two glycoside hydrolases that display a different fold. Inhibition of the GH11 xylanase is mediated by the insertion of an XIP-I Pi-shaped loop (Lalpha(4)beta(5)) into the enzyme active site, whereas residues in the helix alpha7 of XIP-I, pointing into the four central active site subsites, are mainly responsible for the reversible inactivation of GH10 xylanases. The XIP-I strategy for inhibition of xylanases involves substrate-mimetic contacts and interactions occluding the active site. The structural determinants of XIP-I specificity demonstrate that the inhibitor is able to interact with GH10 and GH11 xylanases of both fungal and bacterial origin. The biological role of the xylanase inhibitors is discussed in light of the present structural data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variability in Arabinoxylan, Xylanase Activity, and Xylanase Inhibitor Levels in Hard Spring Wheat

Cereal Chem. 90(3):240–248 Arabinoxylans (AX), xylanase, and xylanase inhibitors have an important role in many cereal food processing applications. The effects of genotype, growing location, and their interaction (G × L) on AX, apparent xylanase activity, and apparent xylanase inhibition activity of Triticum aestivum xylanase inhibitor (TAXI) and xylanase inhibiting protein (XIP) were investig...

متن کامل

Functional importance of Asp37 from a family 11 xylanase in the binding to two proteinaceous xylanase inhibitors from wheat.

Aspergillus niger xylanase is a target enzyme of the two wheat proteinaceous inhibitors, XIP-I and TAXI-I. We previously suggested that the xylanase "thumb" region was XIP-I binding site. Here, we expressed the Asp37Ala mutant in Pichia pastoris and showed that the mutation abolished the enzyme capacity to interact with both inhibitors, suggesting a direct contact at the active site. The mutant...

متن کامل

A novel class of protein from wheat which inhibits xylanases.

We have purified a novel class of protein that can inhibit the activity of endo-beta-1,4-xylanases. The inhibitor from wheat (Triticum aestivum, var. Soisson) is a glycosylated, monomeric, basic protein with a pI of 8.7-8.9, a molecular mass of 29 kDa and a unique N-terminal sequence of AGGKTGQVTVFWGRN. We have shown that the protein can inhibit the activity of two family-11 endo-beta-1, 4-xyla...

متن کامل

TLXI, a novel type of xylanase inhibitor from wheat (Triticum aestivum) belonging to the thaumatin family.

Wheat (Triticum aestivum) contains a previously unknown type of xylanase (EC 3.2.1.8) inhibitor, which is described in the present paper for the first time. Based on its >60% similarity to TLPs (thaumatin-like proteins) and the fact that it contains the Prosite PS00316 thaumatin family signature, it is referred to as TLXI (thaumatin-like xylanase inhibitor). TLXI is a basic (pI> or =9.3 in isoe...

متن کامل

A new chitinase-like xylanase inhibitor protein (XIP) from coffee (Coffea arabica) affects Soybean Asian rust (Phakopsora pachyrhizi) spore germination

BACKGROUND Asian rust (Phakopsora pachyrhizi) is a common disease in Brazilian soybean fields and it is difficult to control. To identify a biochemical candidate with potential to combat this disease, a new chitinase-like xylanase inhibitor protein (XIP) from coffee (Coffea arabica) (CaclXIP) leaves was cloned into the pGAPZα-B vector for expression in Pichia pastoris. RESULTS A cDNA encoding...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 279 34  شماره 

صفحات  -

تاریخ انتشار 2004